Problem:
Solution:
$
\begin{eqnarray*}
& & \frac{\frac{1}{x} + \frac{1}{\frac{1}{x} + 1}}{\frac{1}{x} - \frac{1}{\frac{1}{x} - 1}} \\
&=& \frac{\frac{1}{x} + \frac{x}{1 + x}}{\frac{1}{x} - \frac{x}{1 - x}} \\
&=& \frac{\frac{1 + x + x^2}{x(1 + x)}}{\frac{1 - x - x^2}{x(1 - x)}} \\
&=& \frac{\frac{1 + x + x^2}{1 + x}}{\frac{1 - x - x^2}{1 - x}} \\
&=& \frac{(1 + x + x^2)(1 - x)}{(1 - x - x^2)(1 + x)}
\end{eqnarray*}
$
No comments:
Post a Comment