Problem:
$ 3x^2+14x+40 $
Solution:
The function cannot be factorized. We can do completing the square
$
\begin{eqnarray*}
& & 3x^2+14x+40
&=& 3(x^2 + \frac{14}{3}x) + 40 \\
&=& 3(x^2 + 2\frac{7}{3}x) + 40 \\
&=& 3(x^2 + 2\frac{7}{3}x + \frac{49}{9} - \frac{49}{9}) + 40 \\
&=& 3(x^2 + 2\frac{7}{3}x + \frac{49}{9}) - \frac{49}{3} + 40 \\
&=& 3(x + \frac{7}{3})^2 - \frac{49}{3} + \frac{120}{3} \\
&=& 3(x + \frac{7}{3})^2 + \frac{71}{3} \\
\end{eqnarray*}
$
No comments:
Post a Comment