Problem:
Find constants A and B such that $ y=A\sin x + B \cos x $ satisfies the differential equation $ y"+y'-2y=\sin x $
Solution:
Let differentiate the expressions, twice:
$ y' = A\cos x - B\sin x $
$ y'' = -A \sin x - B \cos x $.
So just substitute the expressions in the differential equation
$
\begin{eqnarray*}
y" + y' - 2y &=& \sin x \\
(-A \sin x - B \cos x) + (A\cos x - B\sin x) -2(A\cos x - B\sin x) &=& \sin x \\
\end{eqnarray*}
$
Next, we arrange the expression and just matching coefficients
$
\begin{eqnarray*}
(-A \sin x - B \cos x) + (A\cos x - B\sin x) -2(A\cos x - B\sin x) &=& \sin x \\
-A \sin x - B \cos x + A\cos x - B\sin x - 2A\cos x + 2B\sin x - \sin x &=& 0 \\
-A \sin x - B\sin x + 2B\sin x - \sin x - B \cos x + A\cos x - 2A\cos x &=& 0 \\
(-A - B + 2B - 1)\sin x + (-B + A - 2A)\cos x &=& 0 \\
(-A + B - 1)\sin x + (-B - A)\cos x &=& 0 \\
\end{eqnarray*}
$
Now it is obvious that $ A = -\frac{1}{2} $ and $ B = \frac{1}{2} $.
No comments:
Post a Comment