Problem:
Solution:
Let's start with the familiar arithmetic mean $ \ge $ geometric mean inequality.
$ \frac{a + b}{2} \ge \sqrt{ab} $.
Substitute $ a = x^2 $, $ b = \frac{4}{x^2} $, these must be positive numbers, so we get
$
\begin{eqnarray*}
\frac{x^2 + \frac{4}{x^2}}{2} &\ge& \sqrt{x^2\frac{4}{x^2}} \\
&\ge& \sqrt{4} \\
&\ge& 2 \\
x^2 + \frac{4}{x^2} &\ge& 4 \\
x^2 + 5 + \frac{4}{x^2} &\ge& 9 \\
x^2 + x\frac{1}{x} + x\frac{4}{x} + \frac{4}{x^2} &\ge& 9 \\
(x + \frac{1}{x})(x +\frac{4}{x}) &\ge& 9 \\
\end{eqnarray*}
$
There are two interesting facts with the inequality. First, we do not really need to condition $ x > 0 $, it is true all the time. When $ a = b $, the inequality becomes an equality, that means $ x = \pm \sqrt{2} $, indeed if you plug that in, the left hand side has exactly the value 9.
No comments:
Post a Comment