Problem:
Solution:
$ f'(x) = 3ax^2 + 2bx + c $
$ f''(x) = 6ax + 2b $
The point of inflection has x coordinate -1, therefore
$ 6a(-1) + 2b = 0 $
The extremas has x coordinate 1 and -3, therefore, 1 and -3 are the roots of $3ax^2 + 2bx + c = 0 $
$ 3a + 2b + c = 0 $
$ 3a(-3)^2 + 2b(-3) + c = 0 $.
The three equations tell us $ b = 3a, c = -9a $.
So the equation is $ f(x) = ax^3 + 3ax^2 - 9ax + d$
When x = 1, $ f(x) = a + 3a - 9a + d = -5a + d = -9 $
When x = -1, $ f(x) = -a + 3a + 9a + d = 11a + d = 23 $
Therefore $ a = 2, d = 1 $
The final answer is $ 2x^3 + 6x^2 - 18x + 1 $
No comments:
Post a Comment