Friday, October 30, 2015

Factorize

Problem:

Factorize $ 6x^2 - 7y^2 $

Solution:

$ (\sqrt{6}x + \sqrt{7}y)(\sqrt{6}x - \sqrt{7}y) $

Thursday, October 29, 2015

Interval Notation (5)

Problem:



Solution:

$ C \cup D = (-\infty, \infty) $
$ C \cap D = [2,9) $

Interval Notation (4)

Problem:



Solution:

$ F \cap H = [5, \infty) $
$ F \cup H = (4, \infty) $

Interval Notation (3)

Problem:



Solution:

$ A \cup B = (-\infty, 1] \cup (6, \infty) $
$ A \cap B = \emptyset $

Interval Notation (2)

Problem:



Solution:

$ E \cap F  = (4, 5] $
$ E \cup F  = (-\infty, +\infty) $

Interval notation

Problem:



Solution:

$ A \cup B = (-\infty, 8] $
$ A \cap B = (-\infty, 3] $

Logarithm


Problem:




Solution:

$ \begin{eqnarray*} & & 6\log(25-x^2)-(\log(5+x)+\log(5-x)) \\ &=& 6\log(25-x^2)-(\log(5+x)(5-x)) \\ &=& 6\log(25-x^2)-\log(25-x^2) \\ &=& 5\log(25-x^2) \\ &=& \log(25-x^2)^5 \\ \end{eqnarray*} $

Rate of change

Problem:

¨

Solution:

a) -1
b) -6
c) 10.546875
d) 0.127706406

Angles

Problem:

Solution:

1) 180
2) PQS
3) 130
4) 30
5) 35
6) 100
7) 50
8) 130
9) x = 11, m<DEF = 29, m<FEG = 61
10) x = 10, m <DEF = 91, m<FEG = 89
11) 2, 4
12) 2, 3
13) Right
14) m<KLM = m<KLN = 45

Wednesday, October 28, 2015

Matrix

Problem:



Solution:

$ \left(\begin{array}{cc} 4 & -5 \\ -2 & 3\end{array}\right) + \left(\begin{array}{cc} 7 & -6 \\ 1 & -4\end{array}\right) = \left(\begin{array}{cc} 11 & -11 \\ -1 & -1\end{array}\right) $

Tuesday, October 27, 2015

Summation

Problem:



Solution:

$ \bar{x} = 10.8 $.

Here are the values of absolute difference from the mean

6.8
4.8
0.8
3.2
9.2

Here are the weighted absolute difference from the mean

27.2
14.4
1.6
3.2
9.2
The sum of these numbers is 55.6

Therefore the final result is 5.05454545...

Monday, October 26, 2015

Extra credits

Problem:



Solution:

$ f'(x) = 3ax^2 + 2bx + c $
$ f''(x) = 6ax + 2b $

The point of inflection has x coordinate -1, therefore

$ 6a(-1) + 2b = 0 $

The extremas has x coordinate 1 and -3, therefore, 1 and -3 are the roots of  $3ax^2 + 2bx + c = 0 $

$ 3a + 2b + c = 0 $
$ 3a(-3)^2 + 2b(-3) + c = 0 $.

The three equations tell us $ b = 3a, c = -9a $.

So the equation is $ f(x) = ax^3 + 3ax^2 - 9ax + d$

When x = 1, $ f(x) = a + 3a - 9a + d = -5a + d = -9 $
When x = -1, $ f(x) = -a + 3a + 9a + d = 11a + d = 23 $

Therefore $ a = 2, d = 1 $

The final answer is $ 2x^3 + 6x^2 - 18x + 1 $


Point of inflection

Problem:



Solution:

The point of inflection is where the second derivative is 0, so we compute the second derivative as follow:

$ f'(x) = -3x^2 + 18x - 4 $
$ f''(x) = -6x + 18 $

Therefore the point of inflection has x coordinate 3, the y coordinate is $ -(3)^3 + 9 \times 3^2 - 4 \times 3 - 1 = 119 $

The curve is concave up in $ (-\infty, 3) $ and is concave down in $ (3, \infty) $.

Sunday, October 25, 2015

Solid

Problem:



Solution:

Minimize $ 4\pi r^2 + 2\pi r h $ subject to $ \frac{4}{3}\pi r^3 + \pi r^2 h = 6 $.

The Lagrangian is $ 4\pi r^2 + 2\pi r h - \lambda(\frac{4}{3}\pi r^3 + \pi r^2 h - 6) $.

The partial derivatives must be 0, so we have

$ 8\pi r + 2\pi h - \lambda (4 \pi r^2 + 2\pi r h) = 0 $
$ 2 \pi r - \lambda(\pi r^2) = 0 $

The second equation implies $ \lambda = \frac{2}{r} $.

Substitute this back to the first equation, solving get $ h = 0 $.

This seems reasonable because we know sphere maximize volume and minimize surface area, it only make sense if the cylindrical part vanish.

So it is simple now, $ \frac{4}{3}\pi r^3 = 6 $, $ r = \sqrt[3]{\frac{9}{2\pi}} = 1.127251652 $.

Farmer knew Lagrangian optimization!

Problem:



Solution:

Minimize x + 2y subject to xy = 405000

The Lagrangian is

$ L(x, y, \lambda) = x + 2y + \lambda(xy - 405000) $

The partial derivatives must be 0, so we get

$ 1 + \lambda y = 0 $
$ 2 + \lambda x = 0 $

Multiply the first equation by $ x $ and multiply the second equation by $ y $ gives $ x - 2y = 0 $.

In other words, $ x = 2y $, so $ xy = 2y^2 = 405000 $, $ y = 450, x = 900 $.

Friday, October 23, 2015

Limit

Problem:



Solution:

$ \frac{x^n - a^n}{x-a} = \frac{(x - a)(x^{n - 1} + ax^{n-2} + .. + a^{n-1})}{x - a} =  (x^{n - 1} + ax^{n-2} + .. + a^{n-1}) $

Therefore $ \lim\limits_{x \to a}\frac{x^n - a^n}{x-a} = \lim\limits_{x \to a} (x^{n - 1} + ax^{n-2} + .. + a^{n-1}) = na^{n-1} $.

Thursday, October 22, 2015

Population

Problem:



Solution:

a) $ f(t) = 30 \times e^0.017t $
b) 41.43796053
c) 1.017145322
d) times

Finance 5

Problem:



Solution:

a)


Times
APY (Decimal)
APY (Percentage)
1
0.052
5.2%
12
0.053257411
5.325741057%
365
0.053371841
5.337184107%
Continuously
0.053375743
5.337574251%

b) 26912.4424

Finance 4

Problem:



Solution:

a) 2347.021742
b) $ f(t) = 2000 \times e^{\frac{3.2}{100}} $
c) $ e^{\frac{3.2}{100}} - 1 = 0.032517505 = 3.251750531\%$
d) $ (e^{\frac{3.2}{100}})^{10} - 1 = 0.377127764 = 37.71277643 \%$

Finance 3

Problem:



Solution:

a) 10326.85819
b) 2055.086475
c) 2937.22456

Finance 2

Problem:



Solution:


Year
Monthly
Daily
Continuously
1
4825.305364
4826.254424
4826.286816
2
5174.127079
5176.162615
5176.232095
4
5949.24245
5953.924315
5954.084156
10
9043.476195
9061.279018
9061.887184
30
36524.23864
36740.36641
36747.76461
APY
7.229008086%
7.250098317%
7.250818125%



To be continued with part b when the choices are available.