
Solution;
secθcscθ−cotθ−secθcscθ+cotθ
Multiply sinθcosθ above and below:
sinθcosθ−cos2θ−sinθcosθ+cos2θ
Make common denominator gives:
sinθ(cosθ+cos2θ)(cosθ+cos2θ)(cosθ−cos2θ)−sinθ(cosθ−cos2θ)(cosθ+cos2θ)(cosθ−cos2θ)
Now do the subtraction
sinθ(cosθ+cos2θ)−sinθ(cosθ−cos2θ)(cosθ+cos2θ)(cosθ−cos2θ)
Simplify the numerator by just expand and subtract:
2sinθcos2θ(cosθ+cos2θ)(cosθ−cos2θ)
Simplify the denominator:
2sinθcos2θcos2θ(1+cosθ)(1−cosθ)
Cancel the cos2θ:
2sinθ(1+cosθ)(1−cosθ)
Expand the denominator:
2sinθ1−cos2θ
Just an identity
2sinθsin2θ
There we go
2cscθ
No comments:
Post a Comment