Processing math: 100%
Cecilia's Random Thoughts
Monday, January 25, 2016
Verify the identity
Problem:
Solution:
cot
(
θ
−
π
2
)
By definition of cotangent, we have
=
cos
(
θ
−
π
2
)
sin
(
θ
−
π
2
)
By phase shift formulas, we have
=
sin
(
θ
)
−
cos
(
θ
)
By definition of tangent, we finally get
=
−
tan
(
θ
)
Thursday, January 21, 2016
Trigonometry problem
Problem:
Solution;
sec
θ
csc
θ
−
cot
θ
−
sec
θ
csc
θ
+
cot
θ
Multiply
sin
θ
cos
θ
above and below:
sin
θ
cos
θ
−
cos
2
θ
−
sin
θ
cos
θ
+
cos
2
θ
Make common denominator gives:
sin
θ
(
cos
θ
+
cos
2
θ
)
(
cos
θ
+
cos
2
θ
)
(
cos
θ
−
cos
2
θ
)
−
sin
θ
(
cos
θ
−
cos
2
θ
)
(
cos
θ
+
cos
2
θ
)
(
cos
θ
−
cos
2
θ
)
Now do the subtraction
sin
θ
(
cos
θ
+
cos
2
θ
)
−
sin
θ
(
cos
θ
−
cos
2
θ
)
(
cos
θ
+
cos
2
θ
)
(
cos
θ
−
cos
2
θ
)
Simplify the numerator by just expand and subtract:
2
sin
θ
cos
2
θ
(
cos
θ
+
cos
2
θ
)
(
cos
θ
−
cos
2
θ
)
Simplify the denominator:
2
sin
θ
cos
2
θ
cos
2
θ
(
1
+
cos
θ
)
(
1
−
cos
θ
)
Cancel the
cos
2
θ
:
2
sin
θ
(
1
+
cos
θ
)
(
1
−
cos
θ
)
Expand the denominator:
2
sin
θ
1
−
cos
2
θ
Just an identity
2
sin
θ
sin
2
θ
There we go
2
csc
θ
Sunday, January 10, 2016
Shift
Problem:
Solution:
We simply check
g
(
0
)
=
f
(
−
1
)
=
−
3
.
So we pick the answer to be D.
Inverse
Problem:
Solution:
Part (a)
f
−
1
(
x
)
=
√
15
+
x
Part (b)
Part (c)
The domain of
f
= Range of
f
−
1
=
[
0
,
+
∞
)
.
The range of
f
= domain of
f
−
1
=
[
−
15
,
+
∞
)
.
Newer Posts
Older Posts
Home
Subscribe to:
Posts (Atom)