Processing math: 100%

Monday, January 25, 2016

Verify the identity

Problem:



Solution:

cot(θπ2)

By definition of cotangent, we have

=cos(θπ2)sin(θπ2)

By phase shift formulas, we have

=sin(θ)cos(θ)

By definition of tangent, we finally get

=tan(θ)

Thursday, January 21, 2016

Trigonometry problem

Problem:



Solution;

secθcscθcotθsecθcscθ+cotθ

Multiply sinθcosθ above and below:

sinθcosθcos2θsinθcosθ+cos2θ

Make common denominator gives:

sinθ(cosθ+cos2θ)(cosθ+cos2θ)(cosθcos2θ)sinθ(cosθcos2θ)(cosθ+cos2θ)(cosθcos2θ)

Now do the subtraction

sinθ(cosθ+cos2θ)sinθ(cosθcos2θ)(cosθ+cos2θ)(cosθcos2θ)

Simplify the numerator by just expand and subtract:

2sinθcos2θ(cosθ+cos2θ)(cosθcos2θ)

Simplify the denominator:

2sinθcos2θcos2θ(1+cosθ)(1cosθ)

Cancel the cos2θ:

2sinθ(1+cosθ)(1cosθ)

Expand the denominator:

2sinθ1cos2θ

Just an identity

2sinθsin2θ

There we go

2cscθ

Sunday, January 10, 2016

Shift

Problem:



Solution:

We simply check g(0)=f(1)=3.
So we pick the answer to be D.

Inverse

Problem:



Solution:

Part (a)
f1(x)=15+x

Part (b)

Part (c)

The domain of f = Range of f1 = [0,+).
The range of f = domain of f1 = [15,+).