
Solution:
Consider z=sin−1y⟹sinz=y
coszdzdy=1
dzdy=1cosz=1√1−sin2z=1√1−y2
The rest is just applying chain rules
ddxsin−1(√1−cosx2)
=11−(√1−cosx2)2ddx√1−cosx2
=11−1−cosx2ddx√1−cosx2
=22−(1−cosx)ddx√1−cosx2
=21+cosxddx√1−cosx2
=21+cosx12√1−cosx2ddx1−cosx2
=21+cosx1√41−cosx2ddx1−cosx2
=21+cosx1√2−2cosxddx1−cosx2
=21+cosx1√2−2cosxsinx2
=sinx1+cosx1√2−2cosx
No comments:
Post a Comment